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Abstract

This paper describes research _ concerned with au-
tomating the monitoring and control of spacecraft sys-

tems. In particu]ar, the paper examines the app]ica-
tion of SR,I's Procedural Reasoning System (PRS) to

the handling of malfunctions in the Reaction Control

System (RCS) of NASA's space shuttle. Unlike tra-
ditional monitoring and control systems, PRS is able
to reason about and perform complex tasks in a very
flexible and robust manner, somewhat in the manner

of a human assistant. Using various RCS malfunctions

as examples (including sensor faults, leaking compo-
nents, multiple alarms, and regulator and jet failures),

it is shown how PRS manages to combine both goal-
directed reasoning and the ability to react rapidly to
unanticipated changes in its environment. In conclu-

sion, some important issues in the design of PRS are
reviewed and future enhancements are indicated.

1 Introduction

As space missions increase in complexity and frequency, the au-
tomation of mission operations grows more and more critical.

Such operations include subsystem monitoring, preventive mainte-
nance, malfunction handling, fault isolation and diagnosis, com-

munications management, maintenance of life support systems,
power management, monitoriugofexperiments, satellite servicing,
payload deployment, orbital-vehicle operations, orbital construc-
tion and assembly, and control of extraterrestrial rovers. Automa-

tion of these tasks can be expected to improve mission productiv-
ity and safety, increase versatility, lessen dependence on ground

systems, and reduce demands for crew involvement in system con-
trol.

It is very important that any system designed to perform these
tasks be as flexible, robust, and interactive as possible. At the

minimum, it should be capable of responding to and diagnos-
ing abnormalities in a variety of configurations and operational

modes. It should be able to integrate information from various
parts of the space vehicle systems and recognize potential prob-

lems prior to alarm limits being exceeded.
The system should suggest and execute strategies for contain-

ing damage and for making the system secure, without losing crit-
ical diagnostic information. It should be able to utilize standard

malfunction handling procedures and take account of all the rele-

vant factors that, in crisis situations, are easily overlooked. False
alarms and invalid parameter readings should be detected, and al-

ternative means for deducing parameter values should be utilized
where possible.

In parallel with efforts to contain damage and temporarily re-

configure vehicle subsystems, the system should be able to begin
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diagnosis of the problem and incrementally adjust reconfigura-

tion strategies as diagnostic information is obtained. The system
should also be capable of communicating with other systems to
seek information, advise of critical conditions_ and avoid harm-

ful interactions. Throughout this process, the system should be
continually reevaluating the state of the space vehicle and should

be capable of changing focus to attend to more serious problems

should they occur.
Finally, the system should be able to explain the reasons for

any proposed course of action in terms that are familiar to as-
tronauts and mission controllers. It should be able to graphically

display the system schematics, the procedures it is intending to ex-
ecute, and the critical parameter values upon which its judgment
is based.

Achieving this kind of behavior is welt beyond the capabilities
of conventional real-time systems. It requires, in contrast, mech-
anisms that can reason in a !'rational" way about the state of

the space vehicle and the actions that need be taken in any given
situation. Moreover, the system should be both coal directed and

reactive. That is, while seeking to attain specific goals, the system
should also be able to react appropriately to new situations in real
time. In particular, it should be able to completely alter focus and

goal priorities as circumstances change. In addition, the system
should be able to reflect on its own reasoning processes. It should
be able to choose when to change goals, when to plan and when

to act, and how to use effectively its deductive capabilities.
A number of system architectures for handling some of these

aspects of reai-time behavior have been recently proposed e.g.,
[Firby, 1987; Kaelbling, 1987; Hayes-Rotlh 1985]. Some of these
approaches are evaluated elsewhere [Georgeff and Ingrand, 1989;

Georgeff and Lansky, 1987; Laffey el al., 1988].
The system to be discussed in the paper is called a Procedu-

ral Reasoning System (PRS). It has been developed over a num-
ber of years at SRI International and has been reported, in part,
in previous publications [Georgeff and Ingrand, 1989; Georgeff

and Ingrand, 1988; Georgeff, 1988; Georgeff and Lansky, 1986a;
Georgeff and Lansky, 1986b; Georgeff and Lansky, 1987].

2 Procedural Reasoning System

PRS is designed to be used as an embedded, real-time reasoning
system. As shown in Figure 1, PRS consists of (1) a database

containing current beliefs or facts about the world; (2) a set of

current goals to be realized; (3) a set of plans, called knowledge
areas (KAs), describing how certain sequences of actions and tests
may be performed to achieve given goals or to react to particu-

lar situations; and (4) an intention structure containing all KAs
that have been chosen for execution. An interpreler (or inference

mechanism) manipulates these components, selecting appropriate

plans based on the system's beliefs and goals, placing those se-
lected on the intention structure, and executing them.

The system interacts with its environment, including other sys-
tems, through its database (which acquires new beliefs in response

to changes in the environment) and 01rough the actions that it
performs as it carries out its intentions.

Goals and Beliefs

The beliefs of PRS provide information on the state of the space

vehicle systems and are represented in a first-order logic. For
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Figure 1: Structure of the Procedural Reasoning System

example, the fact that a particular valve, vl say, is closed could
be represented by the statement (position vl ol).

The goals of PRS are descriptions of desired tasks or behaviors.
In the logic used by PRS, the goal to achieve a certain condition

C is written (! C); to test for the condition is written (? C); to

wait until the condition is true is written (" C); and to conclude
that the condition is true is written (=_ C). For example, the goat

to close valve vl could be represented as (! (posi'_ion v! cl),
and to test for it being closed as (? (position vl ¢1)).

Knowledge Areas

Knowledge about how to accomplish given goals or react to cer-

tain situations is represented in PRS by declarative procedure

specifications called Knowledge Areas (KAs) (see, for example,
Figure 10). Each KA consists of a body, which describes the steps
of the procedure, and an invocation condition, which specifies un-

der what situations the KA is useful and applicable. Together,
the invocation condition and body of a KA express a declarative

fact about the results and utility of performing certain sequences
of actions under certain conditions [Georgeff and Lansky, 1986a].

The body of a KA can be viewed as a plan or plan schema. It is

represented as a graph with one distinguished start node and pos-
sibly multiple end nodes. The arcs in the graph are labeled with
the subgoals to be achieved in carrying out the plan. Successful

execution of a KA consists of achieving each of the subgoals la-
beling a path from the start node to an end node. This formalism

provides a natural and efficient representation of plans involving

any of the usual control constructs, including conditional selec-
tion, iteration, and recursion.

The invocation condition contains a triggering part describing
the events that must occur for the KA to be executed. Usually,

these events consist of the acquisition of some new goals (in which
case, the KA is invoked in a goal-directed fashion) or some change

in system beliefs (resulting in data-directed or reactive invocation)
and may involve both.

The set of KAs in a PRS application system not only consists of
procedural knowledge about a specific domain, but also includes

rnetalevel KAs; that is, information about the manipulation of the

beliefs, goals, and intentions of PRS itself. For example, typical
metalevel KAs encode various methods for choosing among mul-

tiple applicable KAs, modifying and manipulating intentions, and
computing the amount of reasoning that can be undertaken, given
the real-time constraints of the problem domain.

The Intention Structure

The intention structure contains all those tasks that the system
has chosen for execution, either immediately or at some later time.

These adopted tasks are called intentions. A single intention con-
sists of some initial KA together with all the sub-KAs that are

being used in attempting to successfully execute that KA. It is

directly analogous to a process in a conventional programming
system.

At any given moment, the intentionstructure may contain a

number of such intentions,some of which may be suspended or

deferred,some of which may be waiting for certain conditions

to hold priorto activation,and some of which may be metalevel

intentionsfordecidingamong variousalternativecoursesofaction.

For example, in handling a malfunction in a propulsion sys-

tem, PRS might have, at some instant,three tasks (intentions)in
the intentionstructure:one suspended while waiting for,say, the

fuel-tank pressure to decrease below some designated threshold;

another suspended afterhaving justposted some goal that isto be

accomplished (such as interconnectingone shuttlesubsystem with

another);and the third,a metalevel procedure, being executed to

decide which way to accomplish that goal.

Execution

Unless some new belief or goal activates some new KA, PRS will

try to fulfill any intentions it has previously decided upon. This
results in focussed, goal-directed reasoning in which KAs are ex-
panded in a manner analogous to the execution of subroutines in

procedural programming systems. But if some important new fact
or goal does become known, PRS will reassess its current inten-

tions and perhaps choose to work on something else. Thus, not all
options that are considered by PRS arise as a result of means-end

reasoning. Changes in the environment may lead to changes in the
system goals or beliefs, which in turn may result in the consid-

eration of new plans that are not means to any already intended

end. PRS is therefore able to change its focus completely and
pursue new goals when the situation warrants it. In many space

operations, this may happen quite frequently as emergencies of
various degrees of severity occur in the process of handling other,
less critical tasks.

Multiple Systems

In some applications,itisnecessary to monitor and processmany

sourcesof information at the same time. Because ofthis,PRS was

designed to allowseveralinstantiationsof the basic system to run

in parallel.Each PRS instantiatlonhas itsown data base,goals,

and KAs, and operates asynchronously relativeto other PRS in-

stantiations,communicating with them by sending messages.

The system described above has been implemented on Sym-

bolics3600 SeriesLISP, Sun Series3, and Mac Ivory machines.

A more complete description of PRS can be found elsewhere

[Georgeff and Ingrand, 1989; Georgeff and Ingrand, 1988].

3 The RCS Application

The system chosen for experimentation with PRS is the Reaction

Control System (RCS) of the space shuttle. The system structure

is depicted in the schematic of Figure 2 (left part). One of the
aims of our research is to automate the malfunction procedures

for this subsystem. A sample malfunction procedure is presented
in Figure 3.

The RCS provides propulsive forces from a collection of jet
thrusters to control the attitude of the space shuttle. There are
three RCS modules, two aft and one forward. Each module con-

tains a collection of primary and vernier jets, a fuel tank, an oxi-
dizer tank, and two helium tanks, along with associated fecdlines,

manifolds, and other supporting equipment. Propellant flow, both
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Figure 2: System

FRCS $wifehs & TJ]kbaek!

Schematic for the RCS

fuel and oxidizer, is normal!y maintained by pressurizing the pro-
pellant tanks with helium.

The helium supply is fed to its associated propellant tank
through two redundant lines, designated A and B. The pressure

in the helium tanks is normally about 3000 psi; this is reduced to
about 245 psi by regulators that are situated between each helium
tank and its corresponding propellant tank. A number of pressure

and temperature transducers are attached at various parts of the

system to allow monitoring.

Each RCS module receives all commands (both manual and

automatic) via the space shuttle flight computer software. This

software resides on five genera/purpose computers (GPCs). Up
to four of these computers contain redundant sets of the Primary

Avionics Software System (PASS) and the fifth contains the soft-

ware for the Backup Flight System (BFS). All of the GPCs can
provide information to the crew by means of CRT displays.

The various valves in an RCS module are controlled from a

panel of switches and talkbacks (Figure 2, right part). Each switch
moves associated valves in both the fuel subsystem and the oxidizer
subsystem) Switches can be set to OPEN, CLOSE, or GPC,

the last providing the GPCs with control of the valve position.
The talkbaek provides feedback on the associated valve position.

The talkback reading normally corresponds with the associated
switch position, except when the switch is in GPC; in this case,
the talkback shows whichever position the GPC puts the valve in.

The talkbacks may not correspond if a valve has jammed or if the
control or feedback circuit is faulty. If the valves in both the fuel

and oxidizer subsystems do not move in unison, because of some
fault, the talkback displays a barberpole.

As with most dynamic systems, transient faults are common.

For example, in the process of changing switch position, there
will be a short time (about 2 seconds) when the positions of the
talkback and the switch will differ from one another. This is

because it takes this amount of time for the actual valve to change
its position. Furthermore, during this transition, the talkbaek will

also pass through the barberpole position. Thus, a mismatched
talkback and switch position or a barberpole reading does not

always indicate a system fault.

ZBecause the two propellant subsystems are identical, only one sys-
tem is represented in the left part of the figure.
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Figure 3: ARCS Malfunction Procedure

4 System Configuration

Two instances of PRS were set up to handle the RCS applica-

tion. One, called INTI_RFIC_., handles most of the low level trans-
ducer readings, effector control and feedback, and checks for faulty
transducers and effectors. The other, called somewhat mislead-

ingly RCS, contains most of the high-level malfunction procedures,
much as they appear in the malfunction handling manuals for the

shuttle. To test the system, a simulator for the actual RCS was
constructed.

The complete system configuration is shown in Figure 4. Each

of these parts is described in the following sections.

4.1 " The Simulator

During operation, the simulator sends transducer readings and
feedback from various effectors (primarily valves) to I_TERFACE
and communicates alarm messages as they appear on the shut-

tle system displays to RCS. The simulator, in turn, responds ap-

propriately to changes in valve switch positions as requested by
IIf'rZRFAC£. The simulator can be set to model a variety of fault

conditions, including misread transducers, stuck valves, system

leaks, and regulator failures.
A future imp.lementation of the system will be connected to

the more sophisticated shuttle simulator used at Johnson Space
Center.
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Figure 4: System Configuration

4.2 The RCS

The top-level PRS instantiation, RCS, contains most of the mal-
function handling procedures as they appear in the operational
manuals for the space shuttle. RCS takes an abstract view of the

domain: it deals in pressures and valve positions, and does not

know about transducers, switches, or talkbacks. For example,
whenever RCS needs to know the pressure in a particular part of
the system, it requests this information from INTERFACE, which is

expected to deduce the pressure from its knowledge of transducer
readings and transducer status. Similarly, RCS will simply request
that INTERFACE moves a valve to a certain position, and is not
concerned how this is achieved. In this way, RC$ can represent

the malfunction handling procedures in a clean and easily under-
standable way, without encumbering the procedures with various
cross-checks and other details,

4.3 The INTERFACE

The PRS instantiation INTERFACE handles all information con-

cerning transducer readings, valve switches, and valve talkbacks.

It handles requests from RCS for information on the pressures in

various parts of the system and for rates of change of these val-
ues. Determination of this information can require examination

of a variety of transducers, as readings depend on the status of
individual transducers, their location relative to the region whose

pressure is to be measured, and the connectivity of the system via
open valves.

III"rEI_ACE also handles requests from RCS to change the posi-
tion of the valves in the RCS. This involves asking the astronaut

to change switch positions, and waiting for confirmation from the
talkback.

While doing these tasks, INTERFACE is continually checking for

failures in any of the transducers or valve assemblies. When it
notices such failures, it will notify the astronaut or mission con-

troller and appropriately modify its procedures for determining
pressures or closing valves. It will also consider the consequences

of any failures, such as are prescribed in various flight rules for
the shuttle.

5 Sample Interactions

In this section, we examine different scenarios illustrating the ca-
pabilities of PRS.

5.1 Changing Valve Position

The following example illustrates the capacity of the system
to reason about more than one task at a time. Consider the

situation where INTERFACE gets a request from RCS to close
some valve, say frcs-ox-tk-isol-12-valve (Forward RCS, OX-

idizer TanK, one-two ISOLation VALVE). RCS achieves this
by sending INTERFACE the message (request RCS (!(position

frcs-ox-tk-isol-12-valve el))). Responding to this request,
INTERFACE calls a KA that, in turn, asks the astronaut to place
the switch corresponding to this valve in the closed position (see

Figure 5). Once the astronaut has done this, INTERFACE wilI wait
until the talkback shows the requested position and will then ad-

vise RCS that the valve has indeed been closed (Figure 5).

However, while this is taking place, INTERFACE will also notice
that., just after the switch is moved to the closed position, there is a

mismatch with the talkback indicator (which will still be showing

open, because of the normal delay in the valve starting to move).
Furthermore, a fraction of a second later, the talkback will move

into the barberpote position, another indication that things could
be wrong with the valve.

Each of these events will trigger a KA and thus initiate execu-
tion of a task (intention) that seeks to confirm that the talkback

moves to its correct position within a reasonable time; Figure 6
shows the KA which monitors the barberpole position. At this
point, the system is dealing with three different tasks, one respon-
sible for answering the request, one checking the miscomparison

between the switch and the talkback, and one checking for the
barberpole position. Each of these last two tasks immediateIy

suspend themselves (using the "wait-until" (') operator) while
awaiting the specified condition to become true.

For example, the task concerned with monitoring a talkback
barberpole reading will suspend itself until either the positions of
both the switch and the talkback agree, or 10 seconds elapses.

When either of these conditions become true, the task (intention)
will awaken and proceed with the next step. If the talkback is still
in the barberpole position, the astronaut or mission controller will

be notified of the problem. Otherwise, the KA fails, and simply
disappears from the intention structure.

Notice that the KAs that respond to the request from RCS to
change the valve position, that monitor for possible switch dilem-

mas, and that check the barberpole reading are all established
as different intentions at some stage during this process. Vari-
ous metalevel KAs must therefore be called, not only to establish
these intentions, but to decide which of the active ones to work
on next.

A typical state of the intention structure is shown in Fig-
ure 7. It shows a number of intentions in the system INTERFACE,

ordered for execution as indicated by the arrows. The inten-

tion labeled Meta Selector is a metalevel KA (Figure 8). The
other intentions include two that are checking potential switch
problems (Switch Dilemma (Barberpole) and Switch Dilemma

(Closed)) and one that isresponding to the request to closethe

valve (Open or Close Valve). The meta]evel intention,in this

case, is the one currently executing. Although not clear from the

figure, it has just created and ordered the new intentions resulting
from the talkback and the barberpole problems.

5.2 Handling Faulty Transducers

In this scenario, we show how two PRS agents cooperate and

control the execution of their intentions so as to handle faulty
transducers and the resulting false warning alarms.

We will .assume that transducer frcs-ox-tk-out-p-xdcr fails
and remains jammed at a reading of 170 psi. This causes a number
of things to happen. First, it causes a low-pressure alarm to be

activated. This will will be noticed by the PRS instantiation RCS,

which will immediately respond to the alarm by initiating exe-
cution of the KA (Pressurization Alarm (Propellant Tank)).
This KA will, in turn, request a pressure reading from INTERFACE
to ensure that the alarm is valid.

While this is happening, INTERFACE by itself has noticed that

the two transducers on the oxidizer tank disagree with one another
(in this ease, the other transducer is reading the nominal value of
245 psi). This invokes a KA that attempts to determine which of

the two transducers is faulty. It does this by first waiting a few
seconds to ensure that the mismatch is not simply a transient, and

then testing to see if one of the readings is outside normal linfits.
If so, it assumes this is the faulty transducer; this is indeed the
procedure used by astronauts and mission controllers Other KAs,

capable of more sophisticated acts such as checking the values
of downstream or upstream transducers, are used if there is no
corresponding transducer with which to do the cross-check.

Notice what could happen here if one is not careful. Having
more than one thing to do, INTERFACE could decide to service the
request for a pressure reading for the suspect tank. If it does so,

it will simply average the values of the two transducer readings
(yielding 207 psi) and advise RCS accordingly. Clearly, this is not
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what we want to happen: any suspect parameter readings should

be attended to before servicing requests that depend on them.

In the examples we have considered, it has been sufficient to
handle such problems with a relatively simple priority scheme.

We first ascribe the property of being a so-called "safety handler"
to all those KAs that should be executed at the earliest possible

time. Then we design the metalevel KA that chooses between po-
tentially applicable KAs to order all safety handlers for execution
prior to other intentions. In the example given above, the KA that

detects the faulty transducer is a safety handler, and thus is ex-
ecuted prior to servicing the request from RCS. When INTERFACE
eventually gets around to servicing the request from RCS, it disre-

gards the faulty transducer reading and thus advises RCS that the
pressure is 245 psi. RCS then determines that the alarm was ac-

tivated in error and that the pressure is within normal operating
range.

Even with all this going on, other things are happening within
the INTERFACE system. For example, the fact that the transducer

is determined to be bad, together with the fact that it is the very
transducer that informs the shuttle computers of overpressuriza-
tion problems, causes the invocation of another KA. This KA

:reflects a flight rule that states that overpressurization protection
is lost while the transducer is inoperative.

As before, metalevel KAs are invoked to determine which KAs
to adopt as intentions and how to order them on the intention

structure. The development of the intention structure during this
process is shown in Figure 9.

5.3 Failed Regulator

Let's now consider the operation of the top-level PRS instanti-

ation, RCS. The case we first examine occurs when the regula-
tor on the feed line between the helium tank and its associated

propellant tank fails. In this example, we will assume that the

fz'¢s-:fu-he-tk-k-z-eg has failed. We will focus primarily on RCS
(II_TEP.FACE is, of course, working away during this process as
discussed above).

The first thing that happens when the regulator fails is that

pressures throughout the fuel subsystem begin to rise. When
they exceed the upper limit of 300 psi, certain caution-warning

(cw) alarms are activated. These events trigger the execution of a
KA that attempts to confirm that the system is indeed overpres-
surized.

Note that this process is more complicated than it first appears.
The high transducer readings that gave rise to the caution-warning
alarm will also trigger KAs in the PRS system INTERFACE. These

KAs will proceed to verify that the corresponding transducers

are not faulty (as described in subsection 5.2 ); that is, that the
reading of the transducers is indeed accurate. While doing this,
or after doing this, INTERFACE will get a request from RCS to

advise the latest pressure readings. If INTERFACE is in the process
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Figure 9: Intention Structure Development

of checking the transducers, it will defer answering this request
until it has completed its evaluation of transducer status. But

eventually it will return to answering the request _d, in the case
we are considering, advise that the preseure is indeed above 300

psi.
On concluding that the system is overpre_surt|ed, another

KA (Ovez'p_essurined Propellan'_ Tank) is activated and this,
eventually, concludes that the A regulator has failed (see Fig-
ure 10). Note that this KA establishes subgoale to closeboth the
A valve and the B valve, as there are cases when both are open.
For the A valve, this involves s request to TI[TI_ItF,tCIBas discussed

above. However, for the B valve, the system notices that the B
valve is already closed, Thus, its goal is directly achieved without

the necessity to perform any action or request,
The final goal of this KA activates another KA that opens the

valve of the alternate regulator (B). Having opened the valve, it
is desirable to then place it under the control of the on-board
computers. However, this cannot be done until the pressure in

the system drops below 300 psi, as otherwise the GPC will auto-
matically shut the valve again. Thus, the malfunction handling
procedures specify that the astronaut should wait until this condi-

tion is achieved before proceeding to place the valve switch in the
GPC position, ace achieves this by asking ZNTERFACE to moni-

tor the pressure and advise it when it drops below 300 psi. While
waiting for an answer, the task is suspended, and ltCS gets on with

whatever else it considers important.
When the pressure eventually drops below that threshold, the

task (intention) is awakened, and execution continued. Thus, the

valve switch is finally placed in the GPC position and the over-
pressurization problem resolved.

S.4 Isolating a System Leak

Let's assume that there is a leak in the RCS. Usually, the leak will

cause a pressure drop in the system that will trigger a caution-
warning alarm. The KA that responds to thk alarm will first try

to differentiate between a failed regulator and a leak in the system.
If it determines that the system has a leak, it will then establish

the goal to isolate that leak. This, in turn, triggers another KA
that first attempts to secure the system This involves requesting
that the astronauts close all valves in the leaking system,

Again, the PRS system IITEItFACR will, throughout each pro-
cees of closing a valve, check that the valve has indeed closed and

that the corresponding talkbacke are registering closed.
As soon as the system has been secured, PRS identifies the

leaking section by checking for decreasing pressure in each section
of the RCS in turn.

6 Conclusion

The experiments described above provided a severe and positive

test of the system's ability to operate proficiently in real time,
to weigh alternative courses of action, to coordinate its activities,

and to modify its intentions in response to a continuously chang-
ing environment. In addition, PRS met every criterion outlined

by Laffey et el. [1988] for evaluating real-time reasoning systems:
high performance, guaranteed response, temporal reasoning capa-

bilities, support for asynchronous inputs, interrupt handling, con-

tinuous operation, handling of noisy (possibly inaccurate) data,

and shiftof focusof attention.

We believethat the followingfeaturesof PRS played an impor-

tant rolein achieving these results.

Procedural reasonlng: The representation of procedural

knowledge using KAs isa very powerful way to describe the ac-

tionsand procedures that should be executed to accomplish spe-

cificgoals or to respond to certaincriticalevents. One essential

feature of the representationis that the elements of these pro-

cedures are described in terms of their bshariors rather than in

terms of arbitrarily named actions or subroutines. For example,

to achieve the goal "close all affected manifolds," it is essential to
be able to reason about the intended set of manifolds and how

the goal is then to be achieved; a call to a specialized procedure

for every variant of this goal is simply too complex and too prone
to error. Furthermore, a descriptive (declarative) representation

of goals provides robustness as different procedures (KAs) can be

used to accomplish the goal depending on the mode of operation,
the availability of resources, or the time required to perform the

task. Moreover, because the purpose of each step in the procedure

is so represented, other processes can independently decide how
to achieve their own goals without thwarting that plan; indeed,

they may even decide to assist.
Reactive and goal-dlrected reasoning: The capability of

being simultaneously data- and goal-driven is a critical feature of
PRS. PRS provides goal-driven reasoning when explicit goals must

be achieved, such as closing a valve, or repressurizing a system. At
the same time, the reactive capabilities of PRS allow it to respond
to critical events that occur, even when PRS is itself attending

to some other task. This capability of reacting to new events

makes the system highly adaptive to situation changes: any plan
can be interrupted and reconsidered in the light of new incoming
information.

Real-tlme reasoning: One of the most important measures in

real-time applications is reaction time; if events are not handled in
a timely fashion, the process can go out of control. PRS has been

designed so that such a guarantee can be furnished. Although PRS
can execute complex conditional plans, the inference mechanism

used in PRS guarantees that any new event is noticed in a bounded
time [Georgeff and lngrand, 1989; Georgeff and Ingrand, 19881.
While the system is executing any procedure, it monitors new

incoming events and goals. Given that the real time behavior of
the metalevel KAs used in a PRS application can be analyzed, the

user can prove that his applicationcan operate in realtime: any

new event istaken care of in a bounded time.

Reasoning about multiple tasks: The intentionstructure

used in PRS enables the system to attend to more than one task

at a time. These multiple intentionsare usually tightlycoupled

and the order in which they are executed can be very important.

Some may require immediate execution on the basisof urgency;

others may have to be scheduled laterthan others because they

depend on the resultsproduced by the earliertasks. Potential

interactionsamong concurrently executing intentionscan also be

criticalin deciding the most appropriate ordering of tasks. PRS

provides the mechanisms toexamine and manipulate the intention

structure directly;the user can thus specifyany kind of priority

or scheduling scheme desired.
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Figure 10: KA for Overpressurized Propellant Tank

Metalevel reasoning: The provision of metalevel KAs allows

the system to control its problem solving strategies in arbitrarily
sophisticated ways. These metalevel KAs follow the same syntax
and semantics _ application KAs, except that they deal with
the control of the execution of PRS itself. Thus one can write

metalevel KAs that can reason efficiently and effectively about

the problem solving process being used. For example, one can
have a KA to control in which order the applicable KAs are going
to be executed. In the example presented in the subsection 5.2, the

metalevel KA makes sure that the system carries on the testing

t_k before the pressure update task, thus allowing the false alarm
to be correctly recognized. Similarly, one can use metalevel KAs to

choose among different ways to perform a given task, or how best
to meet the real-time constraints of the domain given information

on the expected time required for task execution.

Distributed reasoning: PRS is designed for distributed op-
erations. Thus, different instances of PRS can be used in any

application that requires the cooperation of more than one agent.
The different PRS agents run asynchronousIy; their activity is
therefore unconstrained a priori by that of their colleagues. A

message passing mechanism is provided to make possible commu-
nication between the different PRS agents as well as with external
modules such as simulators or monitors.

h number of critical research problems remain to be solved

before the system will be reliable enough for use in actual space

operations. The system is currently being extended to cover all
malfunction handling procedures and flight rules concerning the
RCS and is to be tested against the main shuttle simulators at

3ohnson Space Center in future work.
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